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Abstract
Background The aim of the present study was to assess in vitro protoscolicidal effects of curcumin nanoemulsion 
(CUR-NE) against protoscoleces of cystic echinococcosis (CE)/hydatid cysts.

Methods The CUR-NE was prepared via spontaneous emulsification of soybean as the oil phase, a mixture of Tween 
80 and Tween 85 as the surfactant, ethanol as the co-surfactant and distilled water. Various concentrations of CUR-NE 
(156, 312, 625 and 1250 µg/ml) were exposed to collected protoscoleces of infected sheep liver hydatid cysts for 10, 
20, 30, 60 and 120 min. Viability of the protoscoleces were assessed using eosin exclusion test. Morphological changes 
of the protoscoleces were observed using differential interference contrast (DIC) microscopy.

Results The mean particle size and zeta potential of CUR-NE included 60.4 ± 14.8 nm and − 16.1 ± 1.1 mV, 
respectively. Results showed that the viability of the protoscoleces decreased significantly with increases in CUR-NE 
concentrations (p < 0.001). The mortality rates of protoscoleces with exposure to concentrations of 1250 and 625 µg/
ml of CUR-NE for 60 min were 94 and 73.33%, respectively. Mortality of the protoscoleces was 100% after 120 min of 
exposure to 1250 and 625 µg/ml concentrations of CUR-NE. Using NIC microscopy, extensively altered tegumental 
surface protoscoleces was observed after protoscoleces exposure to CUR-NE.

Conclusion The findings of the present study revealed the in vitro protoscolicidal potential of CUR-NE. Therefore, 
CUR-NEs are addressed as novel protoscolicidal agents, which can be used as an alternative natural medicine to 
kill the protoscoleces, owing to their low toxicity and significant inhibition potency. However, further studies are 
necessary to investigate pharmacologic and pharmacokinetics of CUR-NEs.
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Introduction
Cystic echinococcosis (CE)/hydatidosis is a cosmopolitan 
zoonotic tapeworm disease with various clinical compli-
cations in humans and herbivores. It is caused by the lar-
val stage of Echinococcus granulosus sensu lato [1]. Based 
on the World Health Organization (WHO) reports, CE is 
one of the 17 neglected tropical diseases (NTDs) with an 
important challenge from medical and economic points 
of view [2]. The CE causative agents are mostly transmit-
ted between the canines (primary definitive hosts) and 
various livestock species (intermediate hosts). Human 
and other intermediate hosts become infected through 
accidental direct ingestion of the infective eggs of E. 
granulosus sensu lato as well as contaminated water and/
or foods [3–6]. The disease usually develops in the host 
liver and lungs with less rate in other organs, including 
brain and bones of the intermediate hosts [1]. Clinical 
characteristics of CE depend on various factors, includ-
ing involved organs, locations, numbers and sizes of cysts 
in the involved organs as well as mass effects within the 
organs and the surrounding structures [5]. Currently, 
various single or combined options for the treatment of 
CE are available, including surgery, percutaneous meth-
ods [puncture, aspiration, injection and re-aspiration 
(PAIR)] and chemotherapy with benzimidazole deriva-
tives (mebendazole and albendazole) for live cysts, as well 
as “watch and wait” method for the silent cysts based on 
image classifications following stage-specific approaches 
[7]. Toxic side effects with high frequencies are the major 
limitations of chemical drugs. The frequent side effects 
are alopecia, hepatotoxicity, leucopenia, osteoporosis, 
teratogenicity and thrombocytopenia [8–11]. Addition-
ally, the most important complications of surgery and 
PAIR for the treatment of CE include possible ruptures 
of the cysts or leakage of the cyst protoscoleces contents 
that can be lead to anaphylactic shock, secondary infec-
tions, and even death of the patients [12, 13]. To solve 
these problems, before surgery, the surgeons usually use 
a broad spectrum of protoscolicidal agents such as 20% 
hypertonic saline, silver nitrate and cetrimide to decrease 
risks of spillage of viable protoscoleces and possible 
recurrence episodes [5]. However, serious complications 
such as biliary fibrosis, hepatic necrosis, and cirrhosis 
have limited use of these agents [5]. Therefore, the use of 
novel protoscolicidal substances for intraoperative killing 
of protoscoleces with high efficacy and low side effects 
are necessary during surgery.

Curcumin (CUR) [1,7-bis(4-hydroxy-3-ethoxyphenyl)-
1,6-heptadien-3,5-dione] is a natural phenolic com-
pound extracted from the ground rhizomes of a 
perennial herb, Curcuma longa Linnaeus. Pharmaco-
logical safety and efficacy of CUR make it a potential 
compound for the treatment and prevention of various 
diseases such as chronic diseases, allergies, arthritis, 

wounds, metal-induced liver damage, diabetes, migraine, 
Alzheimer’s disease and neurological disorders [14–19]. 
In addition to its harmless nature, investigations on 
pharmacological properties of CUR have shown exten-
sive ranges of promising biological and pharmacological 
activities, including anti-microbial [20], anti-inflamma-
tory [21], anti-osteoarthritis [22] and anticarcinogenic 
properties [23]. Furthermore, cytotoxic and parasiticidal 
issues of CUR have been demonstrated in helminthic 
parasites such as Schistosoma mansoni, S. japonicum [24] 
and a wide range of protozoan parasites such as Leishma-
nia spp. [25, 26], Giardia lamblia [27], Trypanosoma [28, 
29], Plasmodium falciparum [30] and Toxoplasma gondii 
[31]. Morover, the in vitro efficacy of chitosan-curcumin 
[32] and chitosan nanoparticles (NPs) [33] have been 
evaluated against protoscoleces of E. granulosus.

Despite numerous advantages of CUR, hydrophobic 
nature of the CUR derivatives, low aqueous solubility, 
chemical instability, poor bioavailability, short half-life 
and rapid metabolism create serious challenges to its 
effectiveness [34]. In recent years, nanotechnology has 
been introduced to medical societies as an advanced 
technology for addressing these limitations [34]. Since it 
can increase the solubility and cellular uptake efficiency, 
dissolution, and bioavailability of materials at the desired 
site of action and, consequently, improve the therapeu-
tic effectiveness [35, 36]. Moreover, the nanomaterials 
can improve cell penetration and also maintain effec-
tive intracellular delivery and accumulation [35]. Vari-
ous kinds of formulations have been used to tackle this 
issue. From these formulations, nanoemulsion (NE) has 
been technologically advanced to improve CUR solubil-
ity and bioavailability [35]. These NEs or fine oil-in-water 
dispersions stabilized with small quantities of emulsifiers 
are very small and hence cannot scatter the light beams. 
Thus, NEs seem clear despite their opaque appearance 
[37]. Despite the studies on natural products such as Cur-
cuma extracts and its derivatives against protoscoleces of 
CE [38–40], no study has been carried out on the effects 
of curcumin nanoemulsion (CUR-NE) on protoscoleces 
of CE, so far. Therefore, the aim of this study is in vitro 
assessment of the protoscolicidal efficacy of CUR-NE 
against protoscoleces of CE.

Materials and methods
Compounds
CUR (CAS-No:458-37-7; Sigma-Aldrich; Purity: ≥80%), 
Soybean oil and eosin powder (Sigma-Aldrich) were 
used for the study. In addition, sodium chloride, ethanol, 
methanol and polysorbates of Tween 80 and Tween 85 
(Merck, Germany) were also used in this work.
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Preparation of curcumin nanoemulsion
The CUR-NE was successfully prepared as described pre-
viously by the authors using spontaneous emulsification 
of soybean as the oil phase, a mixture of Tween 80 and 
Tween 85 as the surfactant, ethanol as the co-surfactant 
and distilled water. Prepared CUR-NE was characterized 
using Malvern Zetasizer Nano ZS instrument and trans-
mission electron microscopy [31].

Protoscoleces collection
Protoscoleces of E. granulosus sensu stricto were col-
lected from livers of the naturally infected sheep, slaugh-
tered at Shiraz slaughterhouse, Fars Province, Southern 
Iran. Protocols for the preparation of protoscoleces and 
viability assessment were previously described by Sadjj-
adi et al. [41].

In vitro protoscolicidal activity
In the current study, a concentration of 1250  µg/ml of 
CUR-NE was prepared, solution then being a 1/2 dilution 
in the series. Various concentrations of CUR-NE, includ-
ing 1250, 625, 312 and 156 µg/ml, were used for various 
exposure times, including 10, 20, 30, 60 and 120  min. 
Initially, 0.5 ml of the protoscoleces (2 × 103/ml) solution 
was transferred into test tubes. Then, 0.5 ml of various 
CUR-NE concentrations were added to each test tube 
and mixed well. Test tubes were incubated at 37  °C for 
10, 20, 30, 60 and 120 min. Then, the upper phase of the 
mixture was removed carefully and 25  µl of eosin stain 
(0.1%) was added to the pellet of protoscoleces and gen-
tly mixed. Protoscoleces sediment were smeared on glass 
slides. Using light microscopy the viability protoscoleces 
were measured [42]. Phosphate buffered saline (PBS) 
solutions containing Tween 80 (10%) as surfactant in the 
preparation of CUR-NE was used as negative control. A 
solution of 20% hypertonic saline was also used as posi-
tive control. Experiments were carried out in triplicate 
and the mean and standard deviation (SD) were calcu-
lated for the samples.

Viability assay
The viability of the protoscoleces was evaluated by their 
flame cell motility under light microscope as well as 
impermeability to 0.1% eosin solution. Technically, dead 
protoscoleces absorb eosin and become red and live pro-
toscoleces do not absorb eosin (no color), demonstrat-
ing typical muscular movements and flame cell activity 
(Fig. 1). Moreover, mortality rate of the protoscoleces was 
calculated and reported as the proportion of dead proto-
scoleces to total protoscoleces [43].

Assessment of the morphologic structure of protoscoleces 
using differential interference contrast (DIC)/Nomarski 
microscopy
The morphological changes of protoscoleces including 
calcareous corpuscles structure changes, disorganization 
of the hooks and destruction of tegument were carefully 
observed in control and treated (CUR-NEs) groups using 
DIC/Nomarski microscopy.

Statistical analysis
Statistical analysis was conducted using GraphPad Prism 
Software v.8.0.0 for Windows (GraphPad, USA). Sta-
tistical differences between the treatment and control 
groups were reported using one-way analysis of variance 
(ANOVA) with 95% confidence intervals (CI) followed by 
Games-Howell multiple comparisons test [44]. Results 
were recorded as mean ± SD and p-values < 0.05 were 
reported as significant.

Results
Characterization of curcumin nanoemulsion
In this study, CUR-NEs were successfully synthe-
sized. The mean particle size of CUR-NEs by DLS was 
60.4 ± 14.8  nm and their zeta potential was − 16.1 ± 1.1 
mV. The spherical shape and size of the CUR-NEs were 
verified using TEM (Fig. 2).

In vitro experiments
In the present study, the viable protoscoleces upper than 
90% were used for further experiments. Viable protoscol-
eces remain colorless and show amoeboid like movement 
and flame cell activity under light microscope. Simulta-
neously, non-viable protoscoleces get colored by eosin 
staining. Figure  3 shows in vitro protoscolicidal activity 
of various CUR-NE concentrations (156, 312, 625 and 
1250  µg/ml) with various exposure times (10, 20, 30, 
60 and 120  min) against protoscoleces of CE. Statisti-
cally, differences between the protoscolicidal effects of 
CUR-NEs were significant for all concentrations and 
exposure times, compared with the negative control 
(p < 0.001). Results showed that viability of the protoscol-
eces decreased significantly with increases in CUR-NE 
concentrations (p < 0.001). At concentrations of 1250 and Fig. 1 Dead (A) and live (B) protoscoleces after staining with 0.1% eosin
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625 µg/ml for 60 min, mortality rates were measured as 
94% and 73.33%, respectively. A 100% mortality rate was 
observed at 1250 and 625 µg/ml concentrations of CUR-
NEe after 120  min. The minimum protoscolicidal activ-
ity of CUR-NEs included 11.67% (156  µg/ml, 10  min). 
ANOVA analysis demonstrated statistically significant 
differences between the mean rates of protoscoleces 
mortality in treatment groups at various exposure times, 
compared with the negative control (p < 0.001).

Morphological and structural analyses of treated 
protoscoleces of CE
Normal morphology was observed in untreated (con-
trol) protoscoleces of CE with intact, stable tegument 
uniformed within the entire cell perimeter and obvious 
calcareous corpuscles as well as normal arrangement 
of hooks on the rostellum (Fig. 4A, C, E and G). In con-
trast, the treated protoscoleces showed loss of viability, 

and morphological changes such as severe damage to the 
tegument, reduction in the size and number of the cal-
careous corpuscles and disorganization of rostellar hooks 
(Fig. 4B, D, F and H).

Discussion
Natural medicines have been used for different parasitic 
diseases for centuries. Due to the good biodegradability 
and safe nature for the host organs, traditional and natu-
ral medicines have been studied extensively for drug dis-
coveries in recent decades [45–48]. Nowadays, several 
available drugs originate from herbal sources and some 
of the effective drugs are naturally based [49]. CUR is a 
natural, nontoxic polyphenolic phytochemical, which 
has been used for several centuries as a therapeutic and 
health-promoting agent [20]. After the first scientific 
report by Oppenheimer (1937) on the use of CUR in 
human biliary disease [50], interests in studies on CUR 

Fig. 2 Transmission electron micrograph of the curcumin nanoemulsion

 



Page 5 of 9Teimouri et al. BMC Complementary Medicine and Therapies          (2023) 23:124 

have increased dramatically. Safety, tolerability and non-
toxicity of CUR are well-verified in animals and humans 
even at high doses [51–54]. CUR and its derivatives have 
extensively been popular due to their anti-inflammatory 
[21, 53] and anti-microbial effects [55, 56]. Up-to-date 
studies have been carried out to assess effects of Cur-
cuma extract and its derivatives against protoscoleces of 
CE [38, 40]. More recently, efficacy of C. longa essential 
oil (CLEO) against protoscoleces of CE was assessed and 
demonstrated that protoscoleces were completely killed 
after 5 and 10 min of exposure to doses of 200 and 100 µl 
/ml CLEO, respectively [40]. Similar studies showed that 
ethanolic extract of C. longa includes antiparasitic effects 
against protoscoleces of CE and the mortality rates of 
protoscoleces following exposure to C. longa extract 
at 50  mg/ml were 71.0, 81.3 and 93.2% after 10, 20 and 
30 min, respectively [38].

Similar to the natural form of CUR, its nanoform is able 
to prevent and eliminate the growth of various microbes 
such as bacteria, fungi and parasites. The present study 
showed protoscolicidal effects of CUR-NE against pro-
toscoleces of CE. Results demonstrated that viability of 
protoscoleces decreased significantly with increases in 
all concentrations of CUR-NEs (p < 0.001). The current 
findings showed that CUR-NEs included potent proto-
scolicidal activities, especially after 120 min at 1250 and 
625  µg/ml (100% mortality rate). Similarly, Azami et al. 

(2018) showed potential of CUR-NEs in treatment of 
acute and chronic toxoplasmosis in mouse models [31]. 
Naturally, NEs provide larger surfaces, including potency 
of increased solubility. This potency is mostly due to 
the large interfacial adsorption of the core compounds, 
increased bioavailability due to the fast delivery of the 
active compounds to plasma membranes (PM) and orga-
nized releases of the drugs [57]. Furthermore, NPs such 
as silver, chitosan and CUR have been used for the treat-
ment of giardiasis in experimental animal models, and 
results showed that the number of the parasites in stool 
and small intestinal sectors decreased in treated rats, 
compared with non-treated ones [58]. In a recent study, 
mortality rates of protoscoleces respectively included 28 
and 32% after 60  min of exposure to 4  mg/ml chitosan 
and CUR, while the mortality rate was nearly 68% in the 
presence of chitosan NPs containing CUR (Ch-Cu NPs) 
at a same concentration after 60  min [59]. Although, 
pharmacological mechanisms of CUR are possibly asso-
ciated with the compound inhibition of various biological 
cell signaling pathways and enzymes, the exact molecular 
mechanisms of CUR parasiticidal activity need further 
investigations [59].

In recent years, multiple inorganic NPs have been 
assessed against protoscoleces of CE [59, 60]. Mah-
moudvand et al. (2014) showed that biogenic sele-
nium NPs (Se-NPs) at all concentrations have potential 

Fig. 3 In vitro protoscolicidal effects of curcumin nanoemulsion against protoscoleces of Echinococcus granulosus sensu stricto at various concentrations 
and exposure times. Positive control, 20% hypertonic saline; negative control, phosphate buffered saline containing Tween 80
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protoscolicidal effects against protoscoleces of CE [61]. 
Rahimi et al. revealed protoscolicidal activity of the green 
synthesized silver NPs (Ag-NPs) and reported 90% mor-
tality rate of protoscoleces using 0.15 mg/ml Ag-NP [62]. 

Nematollahi et al. compared protoscolicidal effects of Se-
NPs and Ag-NPs and reported that the Se-NPs included 
higher protoscolicidal effects than those the Ag-NPs did 
[63]. Napooni et al. reported that gold NPs (Au-NPs) 

Fig. 4 A, C, E and G, micrographs of the hydatid cyst protoscoleces of the control group, showing intact, stable tegument uniformed within the entire 
cell perimeter as well as obvious calcareous corpuscles and normal arrangement of hooks on the rostellum; B, D, F and H, micrographs of the hydatid cyst 
protoscoleces in groups treated with 1250 µg/ml of CUR-NEs, showing thin and tear tegument (3 H), faded calcareous corpuscles and disorganization of 
rostellar hooks, Notes: red arrow in B, D, and F micrographs points at hooks
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at 4  mg/ml concentrations killed 76% of the protoscol-
eces within 60 min [64]. More recently, Ezzatkhah et al. 
(2021) reported potent protoscolicidal effects of Cop-
per-NPs, especially in combination with albendazole, 
which entirely eliminated the parasites after 10 − 20 min 
of exposure [65]. It has been verified that nanomaterials 
can interact with various living molecules and microbes 
because of their large surface-to-volume ratio and easier 
entry into the cells, compared to other particles. There-
fore, nanomaterials can interrupt microbial pathogens, 
especially parasites [66].

Based on the several studies, the mean size of cur-
cuminoid NEs is often less than 100 nm [67]. In the cur-
rent study, the average particle size and zeta potential 
of the prepared CUR-NE included 60.4 ± 14.8  nm and 
− 16.3 ± 1.1 mV, respectively. Additionally, high stability of 
the present CUR-NEs was seen during 2 months of stor-
age at room temperature. This can be associated to highly 
negative zeta potential of the present CUR-NEs. Highly 
positive and negative zeta potentials have been demon-
strated in experiments to technically serve stabilities of 
microemulsions (MEs) and NEs because of their highly 
charged surfaces that resist aggregation of droplets [68]. 
Usually, conventional emulsions include low stabilities 
as shown by sedimentation of stored CUR at RT. Often, 
NEs lead to an improved physical stability [69]. However, 
CUR does not come to contact with water in the exter-
nal phase because CUR is absorbed into the oily phase. 
Hence, NEs seem to provide inactive conditions for CUR. 
In NEs, CUR is actively protected from degradation [69].

In the current study, more detail and more clear obser-
vation of morphological changes of protoscoleces were 
observed using DIC microscopy [70]. Antibacterial 
mechanisms of CUR are well documented [71]. CUR uses 
multiple mechanisms to kill Candida albicans, includ-
ing signaling alteration, cell wall integrity loss, meta-
bolic shift, cell stress, DNA synthesis and repair, hyphal 
development, mitochondrial integrity and transcriptional 
and translational regulation. Of these mechanisms, CUR 
significantly affects genes that control cell wall integrity, 
because most of the genes of the pathway were down-
regulated [71]. Alterations in cell membrane permeability 
reveal changes in the physical state of the membrane or 
compromised cell wall integrity. These changes can result 
in leakages of proteinaceous constituents and other cell 
contents. However, the modes of action of CUR in para-
sitic diseases are not clearly understood and further stud-
ies are necessary to precisely investigate the exact action 
mechanisms of CUR on parasites, especially protoscol-
eces of CE.

Conclusion
This is the first report on in vitro effects of CUR-NEs, as 
protoscolicidal agents, on protoscoleces of E. granulo-
sus sensu stricto. The results showed effective, promis-
ing protoscolicidal activities. Therefore, CUR-NEs are 
addressed as a novel protoscolicidal agents, which can be 
used as alternative natural medicine to kill the protoscol-
eces, owing to their low toxicity and significant inhibi-
tion potency. However, the use of CUR-NE therapeutics 
is still in its primary stage. Further studies are necessary 
to investigate the pharmacologic and pharmacokinetics 
of CUR-NEs.
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